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Abstract

An analytical method is proposed for calculating the steady-state response of a two-level catenary to a uniformly moving

pantograph. The model for the catenary is composed of two strings (the contact and carrying cables) connected by lumped

mass-spring-dashpot elements (hangers), which are positioned equidistantly along the strings. The upper string (carrying

cable) is fixed at periodically spaced points. This model is capable of describing a coupled wave dynamics of both the

carrying cable and the contact cable of the catenary. The pantograph is modelled by a point load, which moves uniformly

along the contact cable. Using the proposed method, the steady-state deflection of the contact cable is analyzed

thoroughly. Additionally, the contact force between the hangers and the contact cable is studied, which is important for

estimation of the fatigue life of the hangers. Two simplified models of the two-level catenary are introduced and studied.

The first model assumes that the carrying cable is infinitely stiff, whereas the second model disregards the discrete character

of the hangers. Predictions of these simplified models are compared to those of the original model.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Overhead catenary systems for high-speed trains require a relatively high tension of both the carrying cable
(carrier) and the contact cable. This is needed to prevent the train velocity from getting close to the wave speed
of flexural waves in the catenary. It was measured, however, that a higher tension leads to a higher contact loss
ratio of the pantograph. To avoid this effect, which leads to a lower efficiency of the current collection, it was
proposed to replace conventional droppers (simple cables, on which the contact wire is suspended) by more
sophisticated rubber damping hangers or friction damping hangers [1]. These hangers have certain stiffness,
viscosity and mass, which can be tuned to minimize wave reflection from the hangers. According to Ref. [1],
such tuning allows to reduce the contact loss ratio.

Introduction of the hangers, which are much stiffer in compression than the conventional droppers (the
latter have nearly zero stiffness in compression), leads to much more intense an interaction between the cables
of the catenary under the pantograph, whose influence is mainly compressive. To account for this interaction,
coupled vibrations of the cables should be considered.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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In this paper, an analytical method is proposed for obtaining the steady-state response of a two-level
catenary to a uniformly moving pantograph. The model for the catenary is composed of two strings connected
by lumped mass-spring-dashpot elements (hangers). This model is capable of describing a coupled wave
dynamics of both the carrying cable and the contact cable. The pantograph is modelled by a point load
of a constant or a harmonically varying with time magnitude. Adopting this model of the pantograph,
it is implicitly assumed that regardless of the pantograph velocity, the coupled vibrations of the
pantograph–catenary system are stable and the steady-state vibrations of this system exist. As shown by
Metrikine and Verichev [2], the stable interaction can always be achieved by a proper choice of the effective
mass, stiffness and viscosity of the pantograph (the viscosity is the most influential parameter in this case).
Note that in this paper the existence of the stable interaction is assumed but the pantograph parameters, which
would ensure this, are not determined.

The emphasis of this study is placed on the deflection of the contact cable and its dependence on the load
speed. Additionally, the contact force between the hangers and the contact cable is discussed. To reveal
significance of the coupling between the two cables, which takes place by means of the lumped hangers, the
response of the two-level catenary is compared to that of two simplified models. In the first simplified model
the carrying cable is assumed infinitely stiff but effective parameters of the droppers are introduced to account
for the stiffness and damping properties of this cable. In the second model, the simplification is concerned with
the hangers, which are ‘continualized’, forming a continuous and homogeneous visco-elastic connection
between the two cables.

All three models, which are considered in this paper, belong to a class of periodically inhomogeneous,
continuous elastic systems. Such systems, being excited by a uniformly moving load, can respond in a
resonance manner at several load velocities. This effect has been studied in the past by a number of researchers
employing different but closely related methods. Mead and Jezequel based their approach on the Fourier-
series techniques [3–6]. Bogacz, Krzyzinski and Popp applied the Flouquet theorem [7,8]. Vesnitskiy,
Metrikine and Belotserkovskiy employed a so-called periodicity condition [9–11]. More references on this
subject can be found in the book of Frýba [12].

As compared to the above-mentioned studies, this paper treats an elastic system, which has not one but two
spatial periods. The larger period is introduced by the fixations of the carrying cable, whereas the smaller
period is associated with the droppers. Additionally, the two-level catenary combines two strongly coupled
elastic systems (strings) with different wave speeds. To the authors’ knowledge, the steady-state response of
such a system to a moving load has not been studied in the past.

The ‘periodicity condition method’ is applied in this paper, although the other methods could be applied as
well. This method is chosen since, in the opinion of the authors, it is elegant, can be interpreted physically, can
be generalized to analyze three-dimensional periodically inhomogeneous systems [13,14] and even can be used
to find the steady-state response of a layer of regularly positioned discrete particles [15].

This paper is structured in the following manner. In Section 2, a system of equations is presented that
governs the transverse motion of the two-level catenary. This system is then transformed into the frequency
domain, in which the steady-state solution is obtained in a closed form by employing the periodicity condition.
This solution can be transformed into the time domain by using any conventional numerical-inversion
technique. In Section 3, results are presented of the numerical analysis of the displacement of the contact cable
and of the contact force between a hanger and this cable. In Sections 4 and 5, the simplified models for the
catenary are introduced and the steady-state solutions for both these models are obtained in the frequency
domain. In Section 6 a comparative study is carried out of the predictions of the original two-level model to
those of the simplified models. Section 7 presents main conclusions, which can be drawn from this study.

2. Governing equations and the solution in the frequency domain

The model for a two-level catenary is composed of two parallel, infinitely long strings as depicted in Fig. 1.
The upper string (the carrying cable) is fixed at periodically spaced fixation points x ¼ mDþ d=2, m ¼ 0, 71,
72, y, whereas the lower string (the contact wire) is suspended from the upper string by means of
lumped mass-spring-dashpot elements (the suspension rods), which are placed periodically at x ¼ nd, n ¼ 0,
71, 72, y along the strings. The system in question is subject to a point load (the current collector),
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Fig. 1. Two-level catenary under moving load.
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which is applied to the lower string. This load moves along the strings with a constant speed and oscillates in
time harmonically.

The equations, which govern the small vertical motion of the system about its equilibrium, are given as

r1A1 @ttw1 � T1@xxw1 ¼ P expðiOtÞdðx� vtÞ; �1oxo1; xand, (1)

r2A2@ttw2 � T2@xxw2 ¼ 0; �1oxo1; xand; xad=2þmD, (2)

T1ð@xw1jx¼ndþ0 � @xw1jx¼nd�0Þ ¼ ððk0 þ c0@tÞðw1 � w2Þ þm0@ttw1Þx¼nd , (3)

T2ð@xw2jx¼ndþ0 � @xw2jx¼nd�0Þ ¼ ððk0 þ c0@tÞðw2 � w1Þ þm0@ttw2Þx¼nd , (4)

ðw1jx¼ndþ0 � w1jx¼nd�0Þ ¼ ðw2jx¼ndþ0 � w2jx¼nd�0Þ ¼ 0, (5)

w2jx¼d=2þmD ¼ 0. (6)

Eqs. (1) and (2) govern the motion of the strings everywhere but at the suspension and fixation points. Eqs. (3)
and (4) give the dynamic equilibrium of vertical forces at the suspension points. Eq. (5) is the continuity
conditions at the suspension points. Eq. (6) describes the fixation of the upper wire.

In Eqs. (1)–(6), subscripts ‘1’ and ‘2’ are related to the lower wire and the upper wire, respectively; wj, j ¼ 1,
2 are the vertical deflections of the strings; rj, Aj and Tj are the material density, the cross-sectional area and
the tension of the strings; k0, c0 and m0 are the stiffness, the damping coefficient and the half-mass of the
suspension rods; P, V and O are the amplitude, the speed and the cyclic frequency of the load; D and d are the
spatial periods of the fixation points and the suspension points, respectively; @t and @x imply the partial
derivatives with respect to time and the horizontal co-ordinate, respectively; dð. . .Þ is the Dirac delta function,
m and n are integers.

The model for a two-level catenary that is depicted in Fig. 1 is periodically inhomogeneous, e.g. its
parameters vary periodically with the co-ordinate x. Thus, this model can exhibit the steady-state response
under a harmonically oscillating load that moves along the strings with a constant speed. This response can be
found with the help of a so-called periodicity condition [9–11], which must be satisfied in the steady-state
regime. For the model in question, this condition reads

wjðx; tÞ ¼ wj xþmD; tþ
mD

V

� �
exp

�iOmD

V

� �
. (7)

Physically, the periodicity condition implies that the displacement pattern of the strings repeats itself in time
with the period D/V simultaneously undergoing the spatial translation D and the phase shift Od/V. In
mathematical terms, Eq. (7) presents a transformation of variables, with respect to which the governing
equations are invariant as long as the initial conditions are not accounted for.

The steady-state solution to Eqs. (1)–(6) can be obtained analytically by transforming the problem into the
frequency domain. This transformation is carried out with the help of the following integral Fourier
transform:

w
ðoÞ
j ðx;oÞ ¼

Z 1
�1

wjðx; tÞ expðiotÞdt. (8)
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Application of this transform to Eqs. (1)–(7) gives

@xxw
ðoÞ
1 þ

o2

c21
w
ðoÞ
1 ¼ �

P

T1V
exp

iðOþ oÞ
V

x

� �
; �1oxo1; xand, (9)

@xxw
ðoÞ
2 þ

o2

c22
w
ðoÞ
2 ¼ 0; �1oxo1; xand ; xad=2þmD, (10)

T1ð@xw
ðoÞ
1 jx¼ndþ0 � @xw

ðoÞ
1 jx¼nd�0Þ ¼ ððk0 � ioc0Þðw

ðoÞ
1 � w

ðoÞ
2 Þ �m0o2w

ðoÞ
1 Þx¼nd , (11)

T2ð@xw
ðoÞ
2 jx¼ndþ0 � @xw

ðoÞ
2 jx¼nd�0Þ ¼ ððk0 � ioc0Þðw

ðoÞ
2 � w

ðoÞ
1 Þ �m0o2w

ðoÞ
2 Þx¼nd , (12)

ðw
ðoÞ
1 jx¼ndþ0 � w

ðoÞ
1 jx¼nd�0Þ ¼ 0, (13)

ðw
ðoÞ
2 jx¼ndþ0 � w

ðoÞ
2 jx¼nd�0Þ ¼ 0, (14)

w
ðoÞ
2 jx¼d=2þmD ¼ 0, (15)

w
ðoÞ
j ðx;oÞ ¼ w

ðoÞ
j ðxþmD;oÞ exp

�iðOþ oÞmD

V

� �
, (16)

where cj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tj=ðrjAjÞ

q
are the wave speeds in the strings.

To obtain the solution to the problem governed by Eqs. (9)–(15), which satisfies the periodicity condition
(16), the following steps will be undertaken. Firstly, the general solution to Eqs. (9) and (10) will be written in
the interval x 2 ½0;D�. This solution will contain 4Ns þ 2 unknown coefficients, Ns being the number of
suspension rods between two neighboring fixation points (every ‘free’ segment of the string will generate two
constants, which correspond to the complex amplitudes of waves propagating leftward and rightward in this
segment). Secondly, this solution will be ‘extended’ to the interval x 2 ½D; 2D� by employing the periodicity
condition (16). The solution in the latter interval will contain the same unknown coefficients. Finally,
these coefficients will be found with the help of the boundary conditions at the suspension and fixation points,
Eqs. (11)–(15).

The general solution to Eqs. (9) and (10) in the interval x 2 ½0;D� can be written as

ðn� 1Þdpxpnd; 1pnpNs

w
ðoÞ
1 ¼ C2n�1 exp

iox

c1

� �
þ C2n exp �

iox

c1

� �
þ Cpart exp

iðoþ OÞx
V

� �
, ð17Þ

0pxpd=2:

w
ðoÞ
2 ¼ C2Nsþ1 exp

iox

c2

� �
þ C2Nsþ2 exp �

iox

c2

� �
, ð18Þ

d=2þ ðn� 1Þdpxpnd ; 1pnpNs :

w
ðoÞ
2 ¼ C2Nsþ2nþ1 exp

iox

c2

� �
þ C2Nsþ2nþ2 exp �

iox

c2

� �
ð19Þ

with

Cpart ¼
PV

T1

1

ðOþ oÞ2 � o2V 2=c21
. (20)

Employing the periodicity condition (16), the general solution, (17)–(19), can be used to write the solution in
the interval x 2 ½D; 2D�. For the analysis to follow, it is sufficient to express w

ðoÞ
1 for DpxpDþ d and w

ðoÞ
2
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for DpxpDþ d=2. These expressions read

w
ðoÞ
1 ¼ exp

iðOþ oÞD
V

� �
C1 exp

ioðx�DÞ

c1

� ��

þC2 exp �
ioðx�DÞ

c1

� ��
þ Cpart exp

iðOþ oÞx
V

� �
, ð21Þ

w
ðoÞ
2 ¼ exp

iðOþ oÞD
V

� �
C2Nsþ1 exp

ioðx�DÞ

c2

� ��

þC2Nsþ2 exp �
ioðx�DÞ

c2

� ��
, ð22Þ

Substituting Eqs. (17)–(19) and Eq. (21) into the boundary conditions (11)–(15), a system of 4Ns þ 2 linear
algebraic equations can be obtained with respect to unknown coefficients Ck; 1pkp4Ns þ 2. More
specifically, the following substitutions have to be made:
�
 Eqs. (17) and (19) are to be substituted into Eqs. (11)–(14) with 1pnpNs � 1 to give the following 4Ns � 4
equations:

� an
1ðaþ b1ÞC2n�1 þ a�n

1 ðb1 � aÞC2n þ an
1b1C2nþ1 � a�n

1 b1C2nþ2 þ ban
2C2Nsþ2nþ1

þ ba�n
2 C2Nsþ2nþ2 ¼ aCpartan

f ; 1pnpNs � 1, ð23Þ

� an
2ðaþ b2ÞC2Nsþ2nþ1 þ a�n

2 ðb2 � aÞC2Nsþ2nþ2 þ an
2b2C2Nsþ2nþ3 � a�n

2 b2C2Nsþ2nþ4

þ ban
1C2n�1 þ ba�n

1 C2n ¼ �bCpartan
f ; 1pnpNs � 1, ð24Þ

�an
1C2n�1 � a�n

1 C2n þ an
1C2nþ1 þ a�n

1 C2nþ2 ¼ 0; 1pnpNs � 1, (25)

�an
2C2Nsþ2nþ1 � a�n

2 C2Nsþ2nþ2 þ an
2C2Nsþ2nþ3 þ a�n

2 C2Nsþ2nþ4 ¼ 0; 1pnpNs � 1, (26)
�
 Eqs. (17) and (19) with x ¼ dNs ¼ D and Eqs. (21)–(22) are to be substituted into Eqs. (11)–(14) to give the
following four equations:

� aNs

1 ðaþ b1ÞC2Ns�1 þ a�Ns

1 ðb1 � aÞC2Ns
þ aNs

f b1C1 � aNs

f b1C2

þ baNs

2 C4Nsþ1 þ ba�Ns

2 C4Nsþ2 ¼ aCparta
Ns

f , ð27Þ

� aNs

2 ðaþ b2ÞC4Nsþ1 þ a�Ns

2 ðb2 � aÞC4Nsþ2 þ aNs

f b2C2Nsþ1 � aNs

f b2C2Nsþ2

þ baNs

1 C2Ns�1 þ ba�Ns

1 C2Ns
¼ �bCparta

Ns

f , ð28Þ

�aNs

1 C2Ns�1 � a�Ns

1 C2Ns
þ aNs

f C1 þ aNs

f C2 ¼ 0, (29)

�aNs

2 C4Nsþ1 � a�Ns

2 C4Nsþ2 þ aNs

f C2Nsþ1 þ aNs

f C2Nsþ2 ¼ 0. (30)
�
 w
ðoÞ
2 should be set to zero at x ¼ d=2 to give the last two equations:

a1=22 C2Nsþ1 þ a�1=22 C2Nsþ2 ¼ 0, (31)

a1=22 C2Nsþ3 þ a�1=22 C2Nsþ4 ¼ 0. (32)
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In Eqs. (23)–(32), the following notations are used:

aj ¼ exp
iod

cj

� �
; af ¼ exp

iðOþ oÞd
V

� �
; bj ¼

ioTj

cj

; j ¼ 1; 2,

a ¼ k0 � ioc0 �m0o2; b ¼ k0 � ioc0.

The system of linear algebraic equations with respect to the coefficients C

k

, 1pkp4Ns þ 2, Eqs. (23)–(32),
can be readily solved numerically given parameters of the system and the frequency o. Substituting these
coefficients into Eqs. (17)–(19), the steady-state response of the cables in the frequency domain can be
determined in the interval x 2 ½0;D�. The response outside this interval can be easily found with the help of the
periodicity condition (16). To determine the response of the cables in the time domain, the inverse Fourier
transform over the frequency o should be applied. Some results of this inversion are presented and discussed
in the next section taking example of a catenary with Ns ¼ 7.

3. The steady-state response of the catenary

In this section, the steady-state dynamic response of the contact cable is studied. Additionally, the contact
force is discussed between the contact cable and the suspension rods.

The response of the catenary is calculated using parameters shown in Table 1. The parameters of the
suspension rods correspond to so-called friction damping hangers and rubber damping hangers, which are being
currently tested with the aim to replace conventional suspension cables of the overhead power lines for high-
speed trains. The main difference between these hangers is their stiffness. The friction hanger is more than 10
times softer than the rubber hanger.

Fig. 2 shows the deflection pattern of the contact cable at the time moment when the load is at the position
x ¼ 3:5 d, precisely in the middle of the first span 0pxpD, which is located between the fixation points x ¼ 0
and D. The positions of these and other relevant fixation points are indicated by vertical solid lines at the top
of the figures. Each figure presents the deflection of the contact cable for a given velocity of the load. The
deflection is plotted both for the friction and rubber hangers.

Figs. 2(a)–(d) show the deflection of the cable caused by the constant load ðO ¼ 0Þ. Fig. 2(a) corresponds to
the load velocity, which is about a half of the wave speeds in the cables. In this case, the cable deflection
pattern is quasi-symmetric in the vicinity of the load, but is obviously asymmetric at a larger scale. This
asymmetry is caused by radiation of elastic waves by a constant load as it moves along a periodically
inhomogeneous system [10]. As shown in [10], transverse elastic waves are excited in the cables every time that
the load passes a suspension point. The excited waves form two pulses, one propagating rightward and the
other leftward along the catenary. Both pulses have continuous spectra, containing all frequencies. Since the
load moves uniformly, it excites these pulses regularly while passing through each suspension point. This
Table 1

Parameters of the model

Geometry

Distance between fixation points Number of suspension points Distance between suspension points

D ¼ 50m Ns ¼ 7 d ¼ D=Ns ¼ 7:1428m

Cables Suspension rods

Contact cable Carrying cable Friction damping hanger Rubber damping hanger

T1 ¼ 19600N T1 ¼ 9800N k0 ¼ 1500N=m K0 ¼ 55000N=m
r1A1 ¼ 2:175kg=m r1A1 ¼ 1:5 kg=m c0 ¼ 50Ns=m c0 ¼ 85Ns=m

s1 ¼ T1=A1 ¼ 145N=mm2 s2 ¼ T2=A2 ¼ 58N=mm2 m0 ¼ 0:2 kg m0 ¼ 0:2 kg

c1 ¼ 94:93m=s c2 ¼ 80:83m=s
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Fig. 2. Displacement patterns of the two-level catenary. (a) V ¼ 50m=s, (b) V ¼ 75m=s, (c) V ¼ 90m=s, (d) V ¼ 105m=s, (e) V ¼ 50m=s
and O ¼ 1Hz. Solid line: rubber hangers; dashed line: friction hangers.
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regularity implies that some harmonic components of these pulses amplify each other being radiated precisely
in phase. In the steady-state regime (after a sufficiently long time), the contribution of these harmonics into the
vibration of the catenary becomes prevailing so that the spectrum of this vibration becomes almost discrete (or
completely discrete if no damping is accounted for). The peaks of this spectrum correspond to the harmonics,
which are excited in phase at each suspension point and are distinguished by the condition that their phase
velocity equals the velocity of the load (in the case that O ¼ 0). It should be noted that there are infinitely
many harmonic components that satisfy this condition since in the periodically inhomogeneous systems
infinitely many waves with different wavelengths may propagate having the same frequency. Conventionally,
the wave with the shortest wavelength is referred to as the main harmonic, whereas all other waves are called
the super-harmonics. A comprehensive discussion of elastic wave radiation in inhomogeneous systems under
moving loads can be found in the review of Vesnitskiy and Metrikine [10].

The effect of the hangers’ type in Figs. 2(a)–(d) is not pronounced, although the friction hangers lead to a
smother shape of the cable. This is natural, since the friction hangers are much softer and cannot give rise to
sharp variations of the deflection pattern.
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Fig. 2(b) shows the cable deflection for somewhat higher load velocity: V=c1 � 0:79; V=c2 � 0:93.
Comparing Figs. 2(a) and 2(b), it can be seen that as the load velocity gets closer to the wave speeds, the
deflection of the cable grows and the waves behind the load become shorter, in correspondence with the
Doppler Effect. The effect of the hangers is not significant like in the previous case.

Fig. 2(c) presents the deflection pattern for V=c1 � 0:95; V=c2 � 1:11. This implies that the load moves just
a little slower than the waves in the contact cable and somewhat faster than the waves in the carrying cable.
The response of the contact cable grows significantly in this case, which is in correspondence with a general
rule that the closer the load velocity to a wave speed, the higher is the response. The waves behind the load
shorten tremendously, complying with the Doppler Effect, which dictates that if V ! c, then the wavelength
of radiated waves must tend to zero. The deflection pattern becomes asymmetric not only at a large scale but
also in the vicinity of the load. This is one of the consequences of a quasi-super-critical motion of the load
(‘quasi’ implies here that the load velocity exceeds the wave speed only in the carrying cable). The contact
cable in front of the load is disturbed only in the very vicinity of the load. This disturbance is solely due to
propagation of waves in the contact cable. The effect of the hangers is perceptible: the friction (soft) hangers
lead to almost twice smaller the wave amplitude behind the load. This result is completely against a ‘static’
expectation that the response of a softer system should be larger. Such an expectation, however, is not
applicable if the load moves with almost the wave speed.

Fig. 2(d) corresponds to a super-critical load motion with V=c1 � 1:11; V=c2 � 1:3. In this case, the
contact cable in front of the load is not disturbed at all in correspondence with the Mach and Cherenkov
Effects [16]. The maximum deflection is lower than in the previous case because of a larger difference between
the load velocity and the wave speed. The wave pattern behind the load in this case is composed both of the
primary wave, which would exist in a corresponding homogeneous system, and a number of super-harmonics
caused by the periodic inhomogeneity. The effect of the hangers’ type on the deflection amplitude is not
pronounced, but the stiffer rubber hangers cause a very irregular deflection of the contact cable.

Fig. 2(e) presents the cable response to a harmonically varying load that moves relatively slowly with the
velocity V ¼ 50m=s. Comparing this figure to Fig. 2(a), it can be seen that the harmonic load causes
somewhat more pronounced and wavy response in front of the load. The cable pattern behind the load
remains qualitatively the same.

To take a closer look at the loading point, around which the highest deflections may be expected in the sub-
critical regime of motion, the load path (the deflection of the contact cable at the loading point) is shown in
Fig. 3 as a function of the load position within the first span 0pxpD. In correspondence with the periodicity
condition (7), this path, for the load of a constant magnitude, is repetitive with the period D. Three velocities
of the load ðO ¼ 0Þ are considered: V ¼ 50; 75; 90m=s, which correspond to the cable deflections shown in
Figs. 2(a–c). The load path for V ¼ 105m=s is not shown since in this case the deflection under the load is
trivially zero.

Fig. 3 shows that the load path is asymmetric with respect to the middle point of the span, x ¼ 25m. This
asymmetry is associated with wave radiation (caused by the system inhomogeneity), which takes place at any
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Fig. 3. Deflection of the contact cable of the two-level catenary at the loading point. (a) Rubber hangers, (b) friction hangers. Dashed—

dotted line: V ¼ 50m=s; dashed line: V ¼ 75m=s; solid line: V ¼ 90m=s.
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load velocity not equal to zero [10]. Thus, the load path must be asymmetric for all load velocities. The degree
of this asymmetry, however, depends on the load velocity. The closer the load velocity to the wave speed, the
more asymmetric is the load path.

According to Fig. 3, the load path changes sharply as the load passes a hanger (positions of the hangers are
indicated by the vertical dashed lines). For the rubber hangers this change is more pronounced than for the
friction hangers, since the former hangers are stiffer. The path between two hangers is asymmetric with respect
to the middle point and the maximum deflection is reached somewhat closer to the hanger, toward which the
load moves. The faster the load moves, the closer this maximum is to this hanger. The load path
corresponding to V ¼ 90m=s is almost repetitive at every inter-hanger interval. This is because the load
velocity is almost equal to the wave speed in the contact cable. In this case, the interaction of the load and the
catenary takes place quasi-locally, around the loading point. Consequently, there are perceptible pieces of the
contact cable, which follow every hanger, where the deflection increases almost linearly, as if the contact cable
were not suspended on the hangers.

The last interesting observation to be made from Fig. 3 is related to the magnitude of the deflection under
the load in the case V ¼ 90m=s. Fig. 3 shows that this deflection is perceptibly smaller for the rubber hangers
than for the friction hangers. This seems to be in contradiction with Fig. 2(c), which shows that in the vicinity
of the load the cable displacement hardly depends on the type of the hangers. This, however, is not a
contradiction, but just a consequence of two effects: a very rapid variation of the cable deflection around the
load and a fact that the maximum deflection of the cable takes place somewhat behind the loading point. In
the case of the rubber hangers, the load is just farther away from the point of maximum deflection than in the
case of the friction hangers.

The maximum deflection of the contact cable takes place at a certain distance from the load. Therefore, this
deflection should be found by calculating the cable deflection at every point of the span 0pxpD, varying the
time from a large negative value to a sufficiently large positive value. Such a calculation, however, would be
very time consuming. In this paper, the maximum deflection of the middle point of the span, x ¼ 25m, is
studied by varying the time. This is a reasonable approximation of the ‘truly maximum deflection’ since this
point has the lowest stiffness in the static sense.

Fig. 4 presents the maximum deflection of the contact cable under the constant ðO ¼ 0Þ load at the point
x ¼ 25m as a function of the load velocity both for the friction and rubber hangers. This figure shows that the
main dynamic amplification of the cable response takes place at the velocity of the load approximately equal
to the wave speed in the contact cable ðc1 ¼ 94:93m=sÞ. This is a conventional phenomenon: the closer the
load velocity to the wave speed, the higher is the response. In addition to the main amplification at
V ¼ c1 ¼ 94:93m=s, Fig. 4 shows a number of resonance peaks corresponding to smaller velocities. Especially
pronounced is the peak at V � 30m=s, which is exhibited by the catenary with rubber hangers. This and the
other resonance peaks are associated with super-harmonics, which the load excites in the periodically
inhomogeneous catenary. The number of these super-harmonics is infinite (theoretically) and if the group
velocity of one of these harmonics approaches the load velocity, a resonance amplification of the response
should be expected [5,10]. Due to the damping in the hangers, however, only a few first harmonics, which
correspond to lower frequencies, can cause the amplification. The resonance peak at V � 30m=s corresponds
to the first super-harmonic and is visible for the catenary with both the rubber and friction hangers. The
catenary with the rubber hangers exhibits a larger amplification because the damping–stiffness ratio for these
hangers is much lower than that for the friction hangers. This is also the reason why the catenary with the
rubber hangers shows a number of smaller peaks, which correspond to higher-frequency super-harmonics. In
the case of the friction hangers, resonance on these harmonics is damped out.

Thus, the main conclusion to be drawn from Fig. 4 is that the maximum response of a catenary should be
expected when the load velocity approaches the wave speed in the contact cable. A number of other critical
velocities may be expected, which lead to a perceptible dynamic amplification, especially in the case that the
damping–stiffness ratio of the hangers is low.

Designing a catenary, it is important to predict the contact force, which a moving pantograph can generate
in the suspension points of the contact cable. In accordance with Eq. (3), this force at the nth hanger is given as

F susp ¼ ððk0 þ c0@tÞðw1 � w2Þ þm0@ttw1Þx¼nd . (33)
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Fig. 5 shows the contact force at x ¼ 0 as a function of time. This position is chosen since the aggregate
stiffness of a hanger and the carrying cable increases, as the hanger gets closer to a fixation point of the carrying
cable. Accordingly, the contact force can be expected to be higher at this hanger. The contact force is shown in
Fig. 5 for the load velocity of 90m=s, which is very close to the wave speed in the contact cable. In this case, the
highest contact force can be expected (as compared to lower or higher velocities of the load). Fig. 5 shows that in
this extreme regime the contact force can be four times as high as the load itself if the stiff rubber hangers are
used. Important enough is that the contact force keeps oscillating long after the load has passed the suspension
point. These oscillations can reduce the fatigue life of the hangers significantly. The softer rubber hangers
correspond to almost as twice as moderate contact force and to much less pronounced post-oscillations. This
suggests that the fatigue life of the softer hangers should be expected to be perceptibly longer.

Thus, in this section, the steady-state dynamic response of a two-level catenary has been analyzed. To do so,
a significant calculation time has been necessary. To reduce this time it makes sense to develop some simplified
models of the two-level catenary, which would be capable of relatively quick and accurate prediction of its
dynamic response. Two such models are presented and studied in the next sections.
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4. Effective one-level model

In this section, an effective one-level model of the catenary is presented, in which the carrying cable is
considered as infinitely stiff. To account for the stiffness and the damping associated with the carrying cable,
effective parameters of the hangers are introduced.

The model is depicted in Fig. 6. It is composed of an infinitely long string (contact cable), which is
suspended by means of lumped mass-spring-dashpot elements, which are placed periodically at x ¼ nd; n ¼

0; �1; �2; . . . along the string. The upper ends of these elements are assumed immovable.
The effective stiffness of the mass-spring-dashpot elements is considered to be the stiffness of a sequence

of two springs, one having the actual stiffness k0 of a hanger and the other having the stiffness 4T2=D

associated with the carrying cable. The latter stiffness is calculated as the static stiffness of the middle
point of a span of the carrying cable, disregarding the suspension rods. The effective damping coefficient
of the elements is constructed in a similar manner, as the damping coefficient of a sequence of two dashpots.
The first dashpot has the actual damping coefficient c0 of a hanger, while the second one has the damping
coefficient 2T2=c2. The latter coefficient corresponds to the dashpot, by which the reaction of an infinite
string (with parameters of the carrying cable) to a point load can be modelled. The effective mass of the
effective elements is taken equal to the mass 2m of a hanger. Thus, the parameters of the ‘effective’ hangers
are given as

keff ¼
4T2k0=D

k0 þ 4T2=D
; ceff ¼

2T2c0=c2

c0 þ 2T2=c2
; meff ¼ 2m0: (34)

The governing equations for the model at hand read

r1A1@ttw1 � T1@xxw1 ¼ P expðiOtÞdðx� vtÞ; �1oxo1; xand, (35)

T1ð@xw1jx¼ndþ0 � @xw1jx¼nd�0Þ ¼ ððkeff þ ceff@t þmeff@ttÞw1Þx¼nd , (36)

ðw1jx¼ndþ0 � w1jx¼nd�0Þ ¼ 0. (37)

In this system of equations and in what follows, the same notations are used as in the previous sections.
The steady-state solution of the system of Eqs. (35)–(37) can be found in the same manner as that of the

equations which govern the motion of the two-level catenary. The solution procedure is shortly outlined
below.

Applying to Eqs. (35)–(37) the Fourier transform defined by Eq. (8), the following system of equations is
obtained in the frequency domain:

@xxw
ðoÞ
1 þ

o2

c21
w
ðoÞ
1 ¼ �

P

T1V
exp

iðOþ oÞ
V

x

� �
; �1oxo1; xand, (38)

T1ð@xw
ðoÞ
1 jx¼ndþ0 � @xw

ðoÞ
1 jx¼nd�0Þ ¼ ððkeff � ioceff �meffo2Þw

ðoÞ
1 Þx¼nd , (39)

ðw
ðoÞ
1 jx¼ndþ0 � w

ðoÞ
1 jx¼nd�0Þ ¼ 0. (40)
V 
P exp (iΩt) 

 x

w1

d0

Fig. 6. Effective one-level model of the catenary.
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The general solution of Eq. (38) in the interval x 2 ½0; d� can be written as

w
ðoÞ
1 ¼ C1 exp

iox

c1

� �
þ C2 exp �

iox

c1

� �
þ Cpart exp

iðoþ OÞx
V

� �
, (41)

where Cpart is given by Eq. (20).
Employing the periodicity condition, which, for the problem at hand, has the following form:

w1ðx; tÞ ¼ w1 xþ nd ; tþ
nd

V

� �
exp

�iOnd

V

� �

) w
ðoÞ
1 ðx;oÞ ¼ w

ðoÞ
1 ðxþ nd ;oÞ exp

�iðOþ oÞnd

V

� �
, ð42Þ

the solution to Eq. (38) in the interval x 2 ½d; 2d� can be expressed as

w
ðoÞ
1 ¼ exp

iðOþ oÞd
V

� �
C1 exp

ioðx� dÞ

c1

� ��
þC2 exp �

ioðx� dÞ

c1

� ��
þ Cpart exp

iðOþ oÞx
V

� �
. (43)

Substitution of Eqs. (41) and (42) into the boundary conditions (39), (40) taken at x ¼ d, gives a system of
two linear algebraic equations with respect to C1 and C2. This system can be readily solved analytically.
Substituting obtained expressions for C1 and C2 into Eq. (41), the steady-state response of the contact cable in
the frequency domain can be derived in the interval x 2 ½0; d�. The response outside this interval can be found
by using the periodicity condition (42). To return to the time domain the Fourier-inversion should be
performed. This will be done in Section 6, where a comparison will be carried out of the dynamic responses of
the originally considered two-level catenary, the effective one-level catenary and a homogenized two-level
catenary, which is introduced and elaborated in the next section.

5. Homogenized two-level model

In this section, a simplified two-level model of the catenary is presented. Relative to the originally
formulated two-level model, the simplification is concerned with the hangers, which are considered here to be
uniformly and continuously distributed along the strings.

The governing equations for this model read

ðr1A1 þmdÞ@ttw1 � T1@xxw1 þ ðkd þ cd@tÞðw1 � w2Þ ¼ P expðiOtÞdðx� vtÞ; �1oxo1, (44)

ðr2A2 þmdÞ@ttw2 � T2@xxw2 þ ðkd þ cd@tÞðw2 � w1Þ ¼ 0; �1oxo1; xad=2þmD, (45)

w2jx¼d=2þmD ¼ 0. (46)

The parameters of the continuously distributed hangers in Eqs. (44)–(46) are related to the parameters of the
lumped hangers by the following self-explanatory relationships:

kd ¼ k0=d; cd ¼ c0=d; md ¼ m0=d. (47)

Transformation of Eqs. (44)–(46) into the frequency domain results in the following system of coupled
ordinary differential equations with the zero-displacement condition at x ¼ d=2þmD:

@xx ~w
ðoÞ
1 þ

o2

c21
�

ad

T1

� �
~wðoÞ1 þ

bd

T1

~wðoÞ2 ¼ �
P

T1V
exp

iðOþ oÞ
V

x

� �
; �1oxo1, (48)

@xx ~w
ðoÞ
2 þ

o2

c22
�

ad

T2

� �
~wðoÞ2 þ

bd

T2

~wðoÞ1 ¼ 0; �1oxo1; xad=2þmD, (49)

w
ðoÞ
2 jx¼d=2þmD ¼ 0, (50)

where ad ¼ kd � iocd �mdo2, bd ¼ kd � iocd .
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The general solution of this system in the interval x 2 ½d=2; d=2þD� can be written as

w
ðoÞ
1 ¼

X4
j¼1

Cj expðigjxÞ þ C
ð1Þ
part exp

iðOþ oÞx
V

� �
,

w
ðoÞ
2 ¼

X4
j¼1

qjCj expðigjxÞ þ C
ð2Þ
part exp

iðOþ oÞx
V

� �
, ð51Þ

where gj, qj and C
ð1;2Þ
part can be found as described below.

The wave numbers gj are the roots of the following polynomial of order four:

o2

c21
�

ad

T1
� g2j

� �
o2

c22
�

ad

T2
� g2j

� �
�

b2
d

T1T2
¼ 0. (52)

The coefficients qj are defined as

qj ¼
bd

T2

�
o2

c22
�

ad

T2
� g2j

� �
(53)

and the coefficients of the particular solutions C
ð1;2Þ
part are defined by the following system of linear algebraic

equations:

�
ðOþ oÞ2

V 2
C
ð1Þ
part þ

o2

c21
�

ad

T1

� �
C
ð1Þ
part þ

bd

T1
C
ð2Þ
part ¼ �

P

T1V
,

�
ðOþ oÞ2

V 2
C
ð2Þ
part þ

o2

c22
�

ad

T2

� �
C
ð2Þ
part þ

bd

T2
C
ð1Þ
part ¼ 0. ð54Þ

Since the system at hand is periodic with the spatial period D, the periodicity condition in the frequency
domain reads

w
ðoÞ
j ðx;oÞ ¼ w

ðoÞ
j ðxþmD;oÞ exp

�iðOþ oÞmD

V

� �
. (55)

Employing this condition, the solution of Eqs. (48)–(50) in the interval x 2 ½d=2þD; d=2þ 2D� can be
expressed as

w
ðoÞ
1 ¼ exp

iðOþ oÞx
V

� �X4
j¼1

Cj expðigjðx� dÞÞ þ C
ð1Þ
part exp

iðOþ oÞx
V

� �
,

w
ðoÞ
2 ¼ exp

iðOþ oÞx
V

� �X4
j¼1

qjCj expðigjðx� dÞÞ þ C
ð2Þ
part exp

iðOþ oÞx
V

� �
. ð56Þ

To find the unknown coefficients Cj , a system of four algebraic equations has to be formulated. The first
two equations of this system can be obtained by substituting w

ðoÞ
1 from Eqs. (51),(56) into the fixation

condition, Eq. (50), at x ¼ d=2 and x ¼ d=2þD. The other two equations can be obtained by requiring that
both the displacement and the slope of the contact cable ðw

ðoÞ
1 and @xw

ðoÞ
1 Þ are continuous at x ¼ d=2þD.

Solving so-obtained system of equations and substituting resulting Cj into Eqs. (51), the steady-state solution
in the frequency domain can be obtained and subsequently transformed into the time domain.

6. Comparison with simplified models

In this section, capabilities of the above-introduced simplified models of the two-level catenary are
investigated by comparing predictions of these models to those of the original two-level model. The
comparison is carried out of the deflection pattern of the contact cable, of the deflection of the contact cable at
the loading point, of the maximum deflection of the contact cable and of the contact force between the hangers
and the contact cable.
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Fig. 7 presents the deflection patterns of the contact cable as calculated by using the original model and the
two simplified models. In this figure and the figures to follow, 2D, 1D and 2Dhom stand for the original two-
level model, effective one-level model and homogenized two-level model. The left and right columns of figures
in Fig. 7 present the patterns of the catenary with the rubber hangers and the friction hangers, respectively.

In general, Fig. 7 allows to conclude that resemblance of the three predictions is much better in the case of
the friction hangers than in the case of the rubber hangers. This is because the friction hangers are much softer,
which results in (i) smoother variation of the global catenary stiffness, enabling better predictions of the
homogenized model and (ii) weaker coupling between the cables, enabling better predictions of the one-level
model.

The effective one-level model predicts the displacement of the contact cable quite well in the vicinity of the
load but fails to do so as the distance from the load grows. This failure is related to the fact that the ‘far-field’
pattern is governed by super-harmonics, which are much more sensitive to the structure of the catenary. The
homogenized two-level model predicts the deflection pattern somewhat better than the effective one-level
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Fig. 7. Comparison of deflection patterns as predicted by the two-level model (2D), effective one-level model (1D) and homogenized two-

level model (2Dhom). (a) Rubber hangers, (b) friction hangers. Solid line: 2D; dashed line: 1D; dashed-dotted line: 2Dhom.
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model. Especially good are predictions for the catenary with soft friction hangers. The stiff rubber hangers,
naturally, worsen the prediction of the homogenized model.

Fig. 8 presents the displacement of the contact cable at the loading point as a function of the position of the
load within the first span. This figure confirms all conclusions made on the basis of the previous figure.
Additionally, one can see one more weakness of the one-level model at relatively low velocities of the load.
This model cannot predict the variation of the deflection of the loading point within the span, which is
especially apparent in the case of the rubber hangers (see the first two figures of the left column). The
homogenized two-level model provides acceptable predictions if the load velocity is relatively low. As the
velocity increases, however, it fails to predict sharp variations of the path of the loading point, which are
caused by the discrete character of the hangers.

The maximum deflection of the contact cable as a function of the load velocity is presented in Fig. 9. This
figure shows that the catenary with the friction hangers is much better approximated by the simplified models,
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Fig. 8. Comparison of the contact cable deflection at the loading point as predicted by 2D, 1D, and 2Dhom models. (a) Rubber hangers, (b)

friction hangers. Solid line: 2D; dashed line: 1D; dashed–dotted line: 2Dhom.
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even at the load velocities close to the critical ones. The catenary with the stiff rubber hangers, on the other
hand, shows obvious deficiency of the simplified models at the critical load velocities.

The contact force between the hanger positioned at x ¼ 0 and the contact cable as a function of time is
shown in Fig. 10. Only the one-level model is compared to the original one, since the homogenized two-level
model cannot describe this contact force. Fig. 10 shows once again that the catenary with the friction hangers
can be approximated reasonably well by the simplified model. On the contrary, the one-level simplification of
the catenary with the rubber hangers fails to approximate both the maximum force and the post-peak
oscillations of this force.

7. Conclusions

In this paper, an analytical method has been proposed for calculating the steady-state response of a two-
level catenary to a uniformly moving pantograph. This method is applicable to linear models of the catenary
only, since it is based on the Fourier transformation of the problem into the frequency domain. The model,
which has been considered in this paper, is composed of two strings, which are connected by lumped mass-
spring-dashpot elements. These elements have been assumed to be linear elastic and to dampen proportionally
to the velocity. They can be used to describe the dynamic behaviour of so-called friction damping hangers and
rubber damping hangers, which are being currently tested with the aim to replace conventional suspension
cables of the overhead power lines for high-speed trains.

The proposed method has been applied to study the deflection of the contact cable and the contact force
between this cable and the hangers. This study has shown that the steady-state deflection pattern of the
contact cable is asymmetric with respect to the loading point independently of the load velocity. The greater
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this velocity, the higher is the degree of asymmetry. The shape of the cable at every time instant has a wavy
character, even at the load velocities, which are considerably lower than the speed of transverse waves in the
cable. At these velocities, the waves are caused solely by the periodically inhomogeneous nature of the
catenary, which leads to radiation of super-harmonics, whose phase velocities are smaller than the wave speed
in the cable. These relatively small phase velocities enable radiation of these harmonics by the load, whose
velocity is smaller than the wave speed. The frequencies of the super-harmonics, which travel behind the load,
are always lower than of those which travel in front of the load. This is a consequence of the Doppler Effect.
Consequently, the latter are damped more efficiently by the viscous elements of the hangers and the
displacement pattern of the contact cable looks as if the waves were radiated behind the load only.

Analysing the path of the load within a span of the catenary, it has been shown that this path is perceptibly
asymmetric with respect to the middle point of this span. This asymmetry, as well as the above-described
asymmetry of the deflection pattern, is a natural consequence of the wave radiation by the load. One of the
important properties of the load path is that it varies sharply as the load passes a hanger. The stiffer the
hanger, the sharper is this variation.

The maximum deflection of one point of the contact cable has been studied as a function of the load
velocity. This maximum has been calculated over a relevant time interval, when the load is close enough to the
observation point so that it causes a perceptible deflection. It has been shown that a considerable dynamic
amplification of the cable response takes place if the load velocity is close to the wave speed in the cable. This
is a well-known phenomenon in the dynamics of continuous and homogeneous systems subject to a moving
source of excitation [14,15]. If the hangers of the catenary are stiff enough, the dynamic amplification takes
place at lower velocities of the load. This effect is caused by radiation of super-harmonics and is known to
arise in periodically inhomogeneous continuous systems under moving loads [4].

The contact force between a hanger and the contact cable has been analyzed, which is important for
estimation of the fatigue life of the hangers. It has been shown that the higher the load speed and the stiffer the
hangers, the greater is this force. The maximum of this force in time is normally reached when the load passes
the hanger. After this moment, the force keeps oscillating. The amplitude and duration of these post-peak
oscillations increase with the load velocity.

Two simplified models of the two-level catenary have been introduced and studied in this paper. In the first
simplified model, which has been referred to as an ‘effective one-level model’, the carrying cable has been
assumed infinitely stiff but effective parameters of the droppers have been introduced to account for the
stiffness and damping properties of this cable. In the second model, a ‘homogenized two-level model’, the
simplification has been concerned with the hangers, which have been ‘continualized’, forming a continuous
and homogeneous visco-elastic connection between the two cables.

Comparing predictions of the simplified models to those of the original model, it has been shown that the
one-level model is capable of a reasonable prediction of the deflection pattern in the very vicinity of the load
only. At higher distances from the load, the homogenized two-level model can be used but only in the case that
the hangers are not too stiff. The homogenized model cannot predict the contact force between a hanger and
the contact cable. The one-level model can do so but its predictions are plausible only in the case of soft
hangers.
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